| Depth Type Date of Strakting S | BARPALAHA, BEZERA ASSAM | d, Diener | | | | | ROR | RORE LOG CHART | . | | | | | | |--|-------------------------|-----------|-----|-----------|------|-------|-----------------------------|----------------|--------------|-------------------------|----------|-----------|--------|-----| | DATE OF STARTING; 19-45-2022 GROUND WATER LEVEL | | | | - | | | 1 | | i | | | | | | | 1 | SORE HOL | E NO: 07 | | | DATE | OF S | TARTING: 19-05-2022 | GROUND WATER | LEVEL
EGL | | AUGER & | WASH BOR | DQ. | | | Type Sample Sam | | | | _ | DALE | S. C. | OMPLETION: 19-03-2022 | | 1 | ALLESSED PROPERTY TOOLS | | | | | | SAMPLE CM CM CM 2 Canyish silty CLAY Canyish fine to medium SAND | DEPTH | OF | | SPT
15 | 15 | Value | VISUAL DESCRIPTION OF SOIL | 10G | o | RAPHICAL REP | ESENTATI | ON OF N-V | lue | | | D | (M) | SAMPLE | | _ | CM | -N | | | 0 | | 0 | 09 | 80 | 100 | | U S S S S S S S S S | 0.50-0.95 | Ь | - | 2 | 2 | 4 | | | | | | | | | | P 2 3 2 5 2 10M 1.5 | 1.0 | n | | | | | | | | | | | | - | | U Brownish SANDY CLAY 2.90M 3 4.50 D Q Q Q 4.60M D Q Q Q Q 4.60M D Q Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q D Q Q Q Q Q Q D Q Q Q Q Q Q D Q Q Q Q Q Q Q D Q Q Q Q Q Q Q D Q Q Q Q Q Q Q Q D Q Q Q Q Q Q Q Q D Q Q Q Q Q Q Q Q Q | 1.50-1.95 | Ь | 2 | က | 2 | 5 | | ********** | / | | | | | | | P 4 7 8 15 Grayish fine SAND CLAY 2.90M 3 D D 6 8 11 19 4.60M 4.60M D D 6 8 11 19 4.60M 6.10M U D 5 6 6 12 Brownish SANDY CLAY 6 10 U D A 5 4 9 Brownish silty CLAY 7.5 U D A 6 10 Grayish fine to medium SAND 10.50M 9 D D D C A 5 6 10 D D D D D D D D D D | 2 | n | | | | | 2.10M | | / | | | | | | | P 4 7 8 15 Grayish fine SAND D 6 8 11 19 4.60M D 6 8 11 19 4.60M D 6 6 12 Brownish SANDY CLAY D 7 5 6 6 12 D 7 6 10 D 7 6 10 D 7 6 10 D 7 7 7 D 7 7 7 D 7 7 7 D 7 7 7 D 7 7 D 7 7 7 D 7 D 7 | 2.0-2.90 | | | | | | Brownish SANDY CLAY 2.90M | | | | | | | | | D 6 8 11 19 4.60M D 7.5 6 6 12 Brownish SANDY CLAY U 8 4 5 4 9 Brownish silty CLAY U 9 4 5 4 9 Brownish silty CLAY U 10.50M D 7.5 | 3.0-3.45 | Ь | 4 | 7 | 80 | 15 | Grayish fine SAND |) | | | | | | - | | P 6 8 11 19 4.60M D 7.5 P 6 6 12 Brownish SANDY CLAY U 6.10M D 7.5 P 7.5 D | 3.5 | D | | | | | | | | | | | | | | D | 4.5-4.95 | Ь | 9 | 80 | 11 | 19 | | 4.5 | | | | | | | | P 5 6 6 12 Brownish SANDY CLAY 6 6.10M 7.5 | 5 | D | | | | | 4.60M | | | | | | | 1 | | U 6.10M P 4 5 4 9 Brownish silty CLAY 7.5 U P 3 4 10 14 10.50M 9 S P 4 4 6 10 Grayish fine to medium SAND 9 D D 4 4 4 4 6 10 6 P 15 19 21 40 7.5 7.5 7.5 D D 16 24 45 7.5 7.5 7.5 D D 18 21 24 45 7.5 7.5 7.5 D D 15.50M 15.50M 13.5 7.3 | 6.0-6.45 | Ь | 2 | 9 | 9 | 12 | Brownish SANDY CLAY | 9 | * | | | | | | | P 4 5 4 9 Brownish silty CLAY U P 3 4 10 14 10.50M S P 4 4 6 10 Grayish fine to medium SAND D D D D D D D D D D D D D D D D D D | 6.5 | n | | | | | 6.10M | | \ | | | | | | | U P 3 4 10 14 10.50M 9 S P 4 4 6 10 Grayish fine to medium SAND 9 D D 4 4 6 10 Grayish fine to medium SAND 10.5 P 15 19 21 40 10.5 10.5 P 18 21 24 45 12 12 12 P 18 21 23 27 50 15.50M 13.5 D D 15.50M D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 7.5-7.95 | Ь | 4 | 5 | 4 | 6 | Brownish silty CLAY | 1 | | | | | | | | P 3 4 10 14 10.50M 9 S P 4 4 6 10 Grayish fine to medium SAND 9 D D 4 4 6 10 Grayish fine to medium SAND 10.5 P 15 19 21 40 10.5 10.5 D P 18 21 24 45 12 12 12 P 18 21 24 45 13.5 13.5 13.5 D D 15.50M D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: 13.5 | 8 | n | | | | | | C./ | | | | | | 1 | | D | 9.0-9.45 | Ь | 3 | 4 | 9 | 14 | | | | | | | | | | 5 P 4 4 6 10 Grayish fine to medium SAND 10.5 D D 15 19 21 40 10.5 | 9.5 | n | | | | | 10.50M | 6 | | | | | | | | D P 15 19 21 40 D D 16.50M 15.50M D 13.5 13.5 D 15.50M 13.5 | 10.5-10.95 | Ь | 4 | 4 | 9 | 10 | Grayish fine to medium SAND | | | | | | | | | P 15 19 21 40 D D 12 12 D D 15.50M 15.50M D 15.50M 13.5 D 13.5 13.5 | = | D | | | | | | , C | | | | | | | | D P 18 21 24 45 D D 15.50M 15.50M 13.5 D D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 2.00-12.45 | Ь | 15 | 19 | 21 | 40 | | 2 | / | / | | | | | | P 18 21 24 45 D P 21 23 27 50 D D 15.50M 13.5 NDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 12.5 | D | | | | | | | | | | | | | | D 15.50M 13.5 13.5 15.50M 15.50M 13.5 15.50M | 3.5-13.95 | P | 18 | 21 | 24 | 45 | | 2 | | | | | | | | P 21 23 27 50 15.50M 13.5 | 14 | D | | | | | | | | | + | | | | | UNDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 5.00-15.45 | Ь | 21 | 23 | 27 | 20 | | 13.5 | | | | | | | | D: DISTURBED SAMPLE:: | 15.5 | D | | | | | 15.50M | | | P. STANDAR | D PENET | RATION | FEST:: | | | | NI II | DISTUR | 3ED | AM | PLE | | D: DISTURBED SAN | MFLE:: | | T. C. C. C. | I VOLUME | 100 | | | | Depth Type 15 15 15 15 15 15 15 1 | | | | | | | BORE LOG CHART | BORE LOG CHART | | | | |
--|------|---------------------|------|-----|----------|---------|----------------------------|--------------------|----------------------|-----------------|-----|-----| | Type SAMPLE ST Type SAMPLE; Type SAMPLE; Type T | 1 | 1 0 | | F | DATE | OF ST | | GROUND WATER LEVEL | | SMACH BORING | | | | TYPE SPT | OLE | NO: 08 | | | DATE | OF C | OMPLETION: 20-05-2022 | 0.18M FROM EGL | NOOE N | WASH BONING | | | | P 1 2 3 Grayish slity CLAY 1.5 | | TYPE
OF
AMPLE | | - | 15
CM | aulsV-N | VISUAL DESCRIPTION OF SOIL | | GRAPHICAL REPRESENTA | TION OF N-Value | C | 100 | | U | | P | | _ | 2 | 6 | Grayish silty CLAY | | | 8 | 8 | 3 | | P 1.5 1.50M 15.50M 1.55MM 1 | | n | | | | | | , | | | | | | U 2 3 6 9 Grayish Brown silty CLAY U 2 3 6 9 Grayish Brown silty CLAY U 1 2 2 4 U 2 4 3 7 U 2 4 3 7 V 2 3 5 8 U 2 3 5 8 U 2 3 5 8 U 2 3 5 8 U 2 8 14 D 4 6 8 14 D 6 8 9 17 D 6 8 8 10 18 D 7 5 6 Crayish fine SAND 10.50M 11.50M 12.50M D 15.50M D | 95 | Ь | | | | | | 1.5 | | | | | | P Grayish SANDY CLAY 3 | | n | - | 2 | - | 3 | 2.90M | | | | | | | U 2 3 6 9 3.70M 4.5 | 45 | Ь | | | | | | 2 | | | | | | P Crayish Brown silty CLAY 4.5 P P P P P P P P P | | n | 2 | က | 9 | 6 | 3.70M | | | | | | | U 2 4 P 2 4 V 2 4 3 7 P 4 3 7 9 V 3 3 4 7 S P 8 11,90M 10.5 P 6 8 14 Grayish fine SAND 12 P P 6 8 14 13.5 D 6 8 10 18 15.50M D D 15.50M 15.50M D D 15.50M D 15.50M D 15.50M | 95 | Ь | | | | | Grayish Brown silty CLAY | 4.5 | | | | 1 | | P | 1 | D | - | 2 | 7 | 4 | | | | | | | | V 2 1 3 4 P 4 3 7 V 2 4 3 7 S P 9 9 V 2 3 5 8 11.90M P V 2 3 5 8 10.5 P A 6 8 14 12.50M 12.50M D B B 10 18 115.50M 15.50M NOISTURBED SAMPLE:: D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 45 | Ь | | 1 | 1 | | | 9 | | | | | | P 7.5 7.5 7.6 7.7 7.5 7.7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 1 | n | 7 | - | 0 | 4 | | | | | | | | P | 95 | Ь | (| , | - | ı | | 7.5 | | | | 1 | | Total Part Tot | 15 | | 7 | 4 | 20 | | | | | | | | | 10.5 P 11.90M 10.5 D | 2 | n | m | 8 | 4 | 7 | | on | | | | | | U 2 3 5 8 11.90M 10.5 P 4 6 8 14 12 P 8 9 17 13.5 P 8 9 17 15.50M D 6 8 10 18 15.50M D 15.50M 15.50M 15.50M | 36.0 | P | | | | | | | | | | | | P Grayish fine SAND 12 12 12 13.5 14 15.50M 15.5 | | U | 2 | 8 | 5 | 8 | 11.90M | C:01 | | | | | | D 4 6 8 14 P B 17 15.50M 15.50M D 6 8 10 18 15.50M D D 15.50M 15.50M NDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 45 | P | | | | | Grayish fine SAND | ç | | | | | | P P T | 2 | D | 4 | 9 | 8 | 14 | | 71 | | | | | | D 6 8 9 17 P P 15.50M 15.50M D 15.50M 15.50M NDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 5 | P | | | | | | 2 | | | | | | P P 15.50M 15.50M D 6 8 10 18 15.50M NDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | | D | 9 | 8 | о | 17 | | 13.0 | | | | | | D 6 8 10 18 15.50M 15.50M 15.50M D D: DISTURBED SAMPLE:: | 45 | P | | | | | | | | | | | | D: DISTURBED SAMPLE:: | 1 | D | 9 | 80 | 10 | 18 | 15.50M | 15 | | | | | | D: DISTURBED SAMPLE:: | 9 | D | | | | | 15.50M | | | | | | | | OND | STURB | ED S | AMP | CE:: | | D: DISTURBED SAI | MPLE:: | P: STANDARD PENE | TRATION TES | T:: | | | Depth Cycle Hole No. Operation Cycle Hole | | | | | | | BORE | BORE LOG CHART | | | | | |---|------------|----------|------|-----|------|--------
--|--------------------|-------------------------------------|-----------------|-------|-----| | DATE OF COMPLETION: 20-05-2022 0.10M FROM EGL CANADILE CANADIL CAN | | | | Ī | DATE | OF ST | 2022 | GROUND WATER LEVEL | Aligep | & WASH BORIN | ď | | | TYPE SAMPLE SAM | ORE HOL | E NO: 09 | | 1- | DATE | OFC | OMPLETION: 20-05-2022 | 0.10M FROM EGL | AGGE | | | | | SAMPLE CM | 112000 | TYPE | | ٦. | | ər | VISUAL DESCRIPTION | | GRAPHICAL REPRESENT | ATION OF N-Valu | ē | | | D | DEPTH | OF | | 15 | 12 | I-Valu | OF SOIL | | 00 | G | S | 5 | | U 2 3 4 7 7 200M 3 3 4 7 7 5.80M With fine SAND | 0.50-0.95 | P | 0.03 | N C | ο C | N R | Grayish silty CLAY | | | 8 | | 3 - | | P 2 3 4 7 2.000M 3 3 4 7 5.80M 4.5 5.80M 4.5 5.80M 5.80M 5.80M 5.80M 5.80M 5.80M 6 6 7 7 14 7 11 20 7 7 14 7 11 20 7 7 14 7 11 20 7 7 14 7 11 20 7 7 14 7 7 14 7 14 7 14 7 31 7 15 28 7 15 28 7 16 16 19 35 15.45M 1 | 1.0 | n | | | | | | , | | | | | | U 5.00M 4.5 U 7 2 2 4 6 Grayish silty CLAY with fine SAND U 8 3 4 7 7 5.80M D 9 4 4 7 111 P 9 4 4 7 111 D 0 6 7 7 7 14 D 0 8 9 11 20 S 0 P 8 9 11 20 D 0 10 13 15 28 | 1.50-1.95 | P | 2 | 8 | 4 | 7 | | | | | | | | P 2 2 4 6 Grayish silty CLAY with fine SAND U 3 4 7 5.80M D 4 4 7 7 11 P 4 4 7 11 D 6 Grayish fine to medium SAND D 7.5 P 6 7 7 14 D 7 9 9 9 11 20 P 7 1 1 20 D 7 1 1 20 D 8 9 11 20 D 9 11 20 D 15.45M D D 15.45M | 2 | U | | | | | | | | | | T | | D S.80M O Grayish fine to medium SAND D A 4 7 11 P A 4 7 11 D D A 4 A 7 11 D D A 4 A 7 11 D D A 4 A 7 11 D D A 5.80M A 5.80M A 6 10 Grayish fine to medium SAND C A 7 7 14 D D A 4 A 7 11 D D A 5.80M A 9 A 7 11 A 10 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 | 3.0-3.45 | Ь | 2 | 2 | 4 | 9 | Grayish silty CLAY with fine SAND | · · | | | | T | | P 3 3 4 7 5.80M U D D D D D D D D D D D D D D D D D D | 3.5 | n | | | | | | 7 7 7 | | | | | | U 5.80M P 3 4 6 10 Grayish fine to medium SAND 6 D 4 4 7 11 P 6 7 7 14 D 9 9 9 S P 8 9 11 20 P 10 13 15 28 D D 12 12 P 13 14 17 31 P 16 16 16 16 16 16 16 D D 15.45M 15.45M D 15.45M 15.45M | 4.5-4.95 | P | 8 | 3 | 4 | 7 | 1 | 2 | | | | 1 | | P 3 4 6 10 Graysh time to medium SAND D 4 4 7 11 P 4 4 7 11 D 6 7 7 14 D 6 7 7 14 D 9 9 9 9 11 20 D 9 11 20 D 9 11 20 D 12 45M D 15.45M | 5 | n | | | | | 5.80M | | | | | | | D | 6.0-6.45 | Ь | က | 4 | 9 | 10 | Grayish fine to medium SAND | 0 | | | | T | | P 4 4 7 11 D P 6 7 7 14 D D 11 20 9 9 S P 11 20 9 10 | 6.5 | D | | | | | | 1 | | | | | | D B F | 7.5-7.95 | Ь | 4 | 4 | 7 | 11 | | €:
•: | | | | | | P 6 7 7 14 D 10 11 20 P 10 13 15 28 D D 13 14 17 31 D D 13 14 17 31 D D 15 16 16 35 15.45M INDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 8 | D | | | | | | | | | | | | D P 8 9 11 20 D D 10 13 15 28 D D 13 14 17 31 D D 15 15 15 INDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 9.0-9.45 | Ь | 9 | 7 | 7 | 14 | | o | | | | П | | 5 P 8 9 11 20 D D 10.5 12 D D 13.5 13.5 D D 15.45M D 15.45M 15.45M D 15.45M 15.45M | 9.5 | D | | | | | | | | | | _ | | D 10 13 15 28 D 13 14 17 31 D 15 15 13.5 D 15 15 15 D 15 15 15 NDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 10.5-10.95 | Ь | 80 | 6 | 7 | 20 | | 10.5 | | | | | | P 10 13 15 28 D 13 14 17 31 D 16 16 19 35 D 15.45M 15.45M D 15.MDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | = | D | | | | | | | / | | | | | D 13 14 17 31 15 5 15 15 15 15 15 15 15 15 15 15 15 | 2.00-12.45 | Ь | 10 | 13 | 15 | 28 | | 17 | | | | | | D | 12.5 | D | | | | | | | | | | | | D 15.45M 15.45M 15.45M D: DISTURBED SAMPLE:: | 3.5-13.95 | Ь | 13 | 14 | 17 | 31 | | 5.0 | | | | | | D 15.45M D: DISTURBED SAMPLE:: | 14 | D | | | | | | | | | | | | UNDISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 5.00-15.45 | Ь | 16 | 16 | 19 | 35 | TO LESS CONTRACTOR DE CONTRACT | 2 | * | | | | | D: DISTURBED SAMPLE:: | 15.5 | D | | | | | | | THE COLUMN TWO IS NOT THE PERSON OF | THE VOLLEY GETS | CT | | | | 11:11 | DISTURE | FING | AMP | | | | PLE:: | P. STANDARD PEN | EIKAIIONIE | ::107 | | | GRAPHICAL REPRESENTATION OF N-Value 20 40 60 80 P: STANDARD PENETRATION TEST:: | BEZERA ASSAM | M | | | | | BORE LOG CHART | BORE LOG CHAR | IART | | | | | | |--|--------------|--------|------|--------|------|-------
--|---------------------------------------|------------|-----------|--------------|---------------------------------------|--------|-----| | DEPTH TYPE STATE OF COMPLETION: 21-05-3022 DISON FROM RECL AUGUST BORNER A WASH BORNER | | | | f | DATE | OF | | V CINI IOGO | ATER I FVF | | | | Citic | | | 10-110 1.50-138 1.50 1 | BORE HOLE | NO: 10 | | | DATE | OF | OMPLETION: 21-05-2022 | 0.20M F | ROM EGL | ı | AUGER | & WASH BC | KING | | | Comparison Com | | TYPE | | - Cont | | 91 | VISUAL DESCRIPTION | | | GRAPHICAL | REPRESENT | ATION OF N- | Value | | | 10 10 10 10 10 10 10 10 | | OF | 15 | | 15 | -Valu | OF SOIL | LOG. | | | | | | | | 0.50-0.95 P 1 1 2 3 Grayish silfy CLAY 1.0 U 1.0-1.10 1.0-1.10 1.50-1.95 P 2 2 4 6 Grayish brown silty CLAY 2 2 4 6 Grayish brown silty CLAY 3 2-80M 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4. | | AMPLE | CM | - | S | N | 300 | | 0 | 20 | 40 | 09 | 08 | 100 | | 1.50-1.95 P 2 2 4 6 Grayish brown silty CLAY 2 80M 3.0-3.45 P 2 2 4 6 Grayish brown silty CLAY 3 3.0-3.45 P 2 2 4 6 Grayish fine SAND 4.5 4.5-4.95 P 5 7 8 15 5.20M 6.0-6.45 P 6 8 9 17 Grayish fine to medium SAND 8 90-9.45 P 6 8 9 17 Grayish fine to medium SAND 8 90-9.45 P 6 8 9 17 10.5-10.95 P 7 9 9 18 11 D 7 10 11 21 12.00-12.45 P 7 10 11 21 12.50-12.45 P 9 12 13 26 13.5-13.95 P 9 9 12 13 26 13.5-13.95 P 9 9 12 13 26 13.5-13.95 P 9 9 12 15 28 13.5-13.95 P 10 13 15 28 14.50 P 10 13 15 28 15.00-15.45 | 0.50-0.95 | Р | - | - | 7 | က | Grayish silty CLAY | | 0 | | | | | | | 1.501.10 1.501.10 1.501.10 1.501.10 1.501.10 1.501.10 1.10M | 1.0 | n | | | | | | | | | | | | | | 1.50-1.95 P 2 2 4 6 Grayish brown silty CLAY 2 0 U | 1.0-1.10 | | | | | 70.0 | 1.10 | 2 | 1.5 | | | | | | | 2 U Grayish fine SAND 4.5 3.0-3.45 P 3 4 4 8 Grayish fine SAND 4.5 4.5-4.95 P 5 7 8 15 5.20M 6.0-6.45 P 5 6 8 14 6.0-6.45 P 6 8 9 17 6.0-6.45 P 6 8 9 17 7.5-7.95 P 6 8 9 17 7.5-7.95 P 6 8 9 18 8 D 6 8 9 17 7.5-7.95 P 7 8 15 9.0-9.45 P 7 9 9 18 10.5-10.95 P 7 10 11 21 12.0-12.45 P 7 10 11 21 12.5 D 7 10 13 15 28 13.5-13.95 P 10 13 15 28 115.50M | 1.50-1.95 | P | 2 | 2 | 4 | 9 | Grayish brown silty CLAY | | | | - 1 | | | | | 3.0-3.45 P 3 4 4 8 Grayish fine SAND 3.5 D 4 4 8 15 3.5 20M 5 D 5 7 8 15 5.20M 6.0-6.45 P 5 6 8 14 6.00M 7.5-7.95 P 6 8 9 17 10.5-10.95 P 7 9 9 18 11 D 7 10 11 21 12.00-12.45 P 7 10 11 21 12.50-12.45 13.5-13.95 P 9 12 13 26 13.5-13.95 P 9 10 13 15 28 13.5-13.95 P 10 13 15 28 13.5-13.95 P 10 13 15 28 13.5-13.95 P 10 13 15 28 | 2 | U | | | | | 2.80M | | 5 | | | Y | | | | 3.5 D 4.5-4.95 P 5 7 8 15 5.20M 6 6 4.5-4.95 P 6 8 14 Grayish fine to medium SAND 7.5 6 7 7 6 7 8 1 7 9 9 1 < | 3.0-3.45 | P | 3 | 4 | 4 | 00 | Grayish fine SAND | | | | | | | | | 4.5-4.95 P 5 7 8 15 5.20M 5 D | 3.5 | D | | | | | | | 4.5 | • | | | | | | 5.20M 6.0-6.45 P 5 6 8 14 Grayish silty CLAY 6.50 U 8 7.5-7.95 P 6 8 9 17 7.5-7.95 P 6 8 9 17 7.5-7.95 P 6 8 9 17 8 9.0-9.45 P 5 7 8 15 9.5-9.45 P 7 9 9 18 10.5-10.95 P 7 10 11 21 12.00-12.45 P 7 10 11 21 12.00-12.45 P 7 10 11 21 12.50-12.45 P 7 10 11 21 12.50-13.95 P 9 12 13 25 13.5-13.95 P 10 13 15 28 15.50M 15.50 D D DISTURBED SAMPLE: | 4.5-4.95 | Ь | 2 | 7 | ω | 15 | | | | | | | | 1 | | 6.5 G.06.45 P 5 6 8 14 Grayish silty CLAY 6.00M 7.5-7.95 P 6 8 9 17 Grayish fine to medium SAND 8 D | 5 | D | | | | | 5.20M | | 9 | • | | | | | | 6.5 U 6.00M 8 | 6.0-6.45 | Р | 2 | 9 | ω | 14 | Grayish silty CLAY | | | | | | | | | No. 15.7055 P 6 8 9 17 Grayish fine to medium SAND 9 18 9 17 9 9 18 9 9 9 9 9 9 9 9 9 | 6.5 | U | | | | | 6.00M | | 7.5 | * | | | | 1 | | 8 D 8 15
90-945 P 5 7 8 15
9 9 18
10.5-10.95 P 7 9 9 18
11 D 7 10 11 21
12.00-12.45 P 7 10 11 21
12.50-12.45 P 9 12 13 25 2 0
13.5-13.95 P 9 12 13 25 2 0
13.5-13.95 P 10 13 15 28
15.00-15.45 28 | 7.5-7.95 | Ь | 9 | ω | တ | 17 | Grayish fine to medium SAND | | | | | | | | | 9.5 D | 8 | D | | | | | | | 6 | * | | | | | | 9.5 D 7 9 9 18 10.5-10.95 P 7 9 9 18 12.00-12.45 P 7 10 11 21 12.00-12.45 P 7 10 11 21 13.5-13.95 P 9 12 13 25 28 13.5-13.95 P 10 13 15 28 15.00-15.45 P 10 13 15 28 15.00-15.45 D D DISTURBED SAMPLE:: | 9.0-9.45 | Ь | 2 | 7 | 80 | 15 | | | • | | | | | | | 10.5-10.95 P 7 9 9 18 11 D 7 10 11 21 12.00-12.45 P 7 10 11 21 13.5-13.95 P 9 12 13 25 22 13.5-13.95 P 10 13 15 28 15.00-15.45 P 10 13 15 28 15.00-15.45 D 10 13 15 28 15.00-15.45 D 0. DISTURBED SAMPLE:: | 9.5 | D | | | | | | | 0.5 | • | | # # # # # # # # # # # # # # # # # # # | | | | 12.00-12.45 P 7 10 11 21 1.00.48 P 7 10 11 21 1.00.48 P 7 10 11 21 1.00.48 P 12 13 26 22 00 13.5-13.95 P 9 12 13 26 22 00 15.00-15.45 P 10 13 15 28 15.00-15.45 D 15.00-15.45 D D: DISTURBED SAMPLE:: | 10.5-10.95 | Ь | 7 | თ | თ | 18 | | | 2 | - | | | | | | 12.00-12.45 P 7 10 11 21 21 25 2 | 11 | D | | | | | | | 12 | _ | | | | | | 13.5-13.95 P 9 12 13 25 25 0 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | 12.00-12.45 | Ь | 7 | 10 | 7 | 21 | () | | 1 | | | | | | | 13.5-13.95 P 9 12 13 26 26 27 28 13 26 26 27 28 15.00-15.45 P 10 13 15 28 15.50M 15.50 | 12.5 | D | | | | | C | | 2 | • | | | | | | 15.00-15.45 P 10 13 15 28 15.50M 15.5 | 13.5-13.95 | Ь | თ | 12 | 13 | 25 | 8 SHO | | 0.0 | _ | | | | | | 15.00-15.45 P 10 13 15 28 709 1W 15.50M 15.50M D: DISTURBED SAMPLE:: | 14 | D | | | | | The state of s | | т. | | | | | | | 15.5 D 15.50M 15.1 D. DISTURBED SAMPLE:: | | Ь | 10 | 13 | 15 | 28 | 2 | | 2 | * | | | | | | 11. INDICTI BRED SAMPLE:: D: DISTURBED SAMPLE:: | | D | | | | | 15.50M | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | D. OTFA | ILLA DIN DEN | FTDATION | Treer. | | | O: UNDISTONDED SAME EE: | | STURE | REDS | AMP | VE: | | D: DISTURBED SAN | APLE:: | | F: SIA | NOARD FEN | EINAIIO | | | | BEZERA ASSAM | | | | | | BORE | LOG CHAR | रा | | | | | | |----------------------------|------|---|-----|------|-------
--|--------------------|----------|-------------------------------------|---------------------------------|----------------------|---------|-----| | | | | | DATE | OF ST | DATE OF STARTING: 20-05-2022 | GROUND WATER LEVEL | ER LEVEL | | GEOTA | ALIGED & WASH BORING | UNIC | | | BORE HOLE NO: 12 | 12 | | 1= | DATE | OF C | DATE OF COMPLETION: 20-05-2022 | 0.20M FROM EGL | M EGL | | AGGEN | 00 110000 | | | | DEPTH TYPE | PE - | 4 | SPT | 14 | ənji | VISUAL DESCRIPTION | 90 | | GRAPHICAL REPRESENTATION OF N-Value | REPRESENT | ATION OF N- | /alue | | | | Ш | | | | εV-N | OF SOIL | | 0 | 20 | 40 | 09 | 80 | 100 | | 95 | Ь | | - | 2 | 3 | Grayish silty CLAY | 0 | 1 | | | | | | | 1.0 | n | | | | | | | | | | | | | | 1.50-1.95 | Ь | - | - | 2 | 3 | Grayish brown silty CLAY | C. | | | | | | | | 2 1 | n | | | | | | | k | | | 1 | | | | 3.0-3.45 I | P | - | 2 | 2 | 4 | | | | | | | | | | 3.5 | U | | | | | 4.60M | | 1 | | | | | | | 4.5-4.95 I | P | 2 | 8 | 2 | 5 | Grayish Sandy CLAY | 4. | | | | | | | | 3 1 | U | | | | | 5.80M | | | | | | | | | 6.0-6.45 F | Ь | 4 | 2 | 7 | 12 | Grayish fine SAND | | 0 | | | | | | | 6.5 I | D | | | | | 7.70M | 1 | | | | | | | | 7.5-7.95 | P | 7 | 8 | 6 | 17 | Grayish silty CLAY | G.) | | | | | | | | 8 | U | | | | | | | 1 | | | | | I | | 9.0-9.45 I | Р | 3 | က | က | 9 | | | <i>y</i> | | | | | | | 1 5.6 | U | | | | | M09.6 | | | / | | | | | | 10.5-10.95 | P | 8 | 6 | 10 | 19 | Grayish fine SAND | 10.5 | - | | | | | | | 11 1 | D | | | | | | | | | | | | | | 12.00-12.45 | P | 7 | 8 | 1 | 19 | | 12 | 7 | | | | | 1 | | 12.5 I | D | | | | | | (| | | | | | | | 3.5-13.95 | P | 7 | 6 | 13 | 22 | | 13.5 | | | | | | | | 14 I | D | | | | | | | | | - | | | | | 15.00-15.45 | P | 8 | 10 | 12 | 22 | | 75 | | 1 | | | | | | 15.5 I | D | | | | | 15.50M | | | P. Com A N. | TSAL NOIL A GENERAL AND THE CH. | NOIT FOLLOW | and and | | | II. LINDISTIIRBED SAMPLE:: | | | 1 | | | THE TOTAL PROPERTY OF THE PARTY | | | | ֡ | | | | | | | | | | | BORE LOG CHART | BORE LOG CHART | RT | | | | | | |------------------|-------------------------|------|--------|-----|----------|--------------------------------|--------------------|-----------|-----------------|--|---------------------|------------|-----| | | | | | DAT | TE OF | DATE OF STARTING: 21-05-2022 | GROUND WATER LEVEL | TER LEVEL | | AUGER | AUGER & WASH BORING | SING | | | BORE HOLE NO: 13 | E NO: 1 | ~ | | DAT | TE OF | DATE OF COMPLETION: 21-05-2022 | 0.18M FROM EGL | OM EGL | | | | | | | DEPTH (M) | TYPE
OF
SAMPLE | 15 A | SPT 15 | | 9nlsV-V | VISUAL DESCRIPTION OF SOIL | LOG. | 0 | GRAPHICAL
20 | GRAPHICAL REPRESENTATION OF N-Value 20 40 60 8 | TION OF N-V | alue
80 | 100 | | 0.50-0.95 | P | | - | + | - | Grayish brown silty CLAY | | 0 | | | | | | | 1.0 | ם | | | | | M08.0 | | | | | | | | | 1.50-1.95 | Ь | - | - | 2 | 3 | Grayish brown silty CLAY | | U. | | | | | | | 2 | n | | | - 1 | + | | | 3 | | | | | | | 3.0-3.45 | d. | 2 | 7 | 7 | 4 | | | | | | | | | | 3.5 | | - | 0 | - | " | | 4 | 4.5 | | | | | | | 5 | , D | 1 | 1 | - | \vdash | | | | | | | | | | 6.0-6.45 | Ь | 2 | ო | 2 | ∞ | | | 9 | | | | | | | 6.5 | U | | | | - | | <u> </u> | | | | | | | | 7.5-7.95 | Ь | 3 | က | 9 | 6 | | | 0. | | | | | | | 8 | n | | | | \dashv | | | | | | | | | | 9.0-9.45 | Ь | 2 | 4 | 7 | 1 | | | D | | | | | | | 9.5 | n | | | 1 | \dashv | | | L | | | | | | | 10.5-10.95 | А | n | 4 | 2 | 6 | | | 0.0 | | | | | | | 11 | | 0 | 4 | 00 | 12 | | | 12 | | | | | | | 12.5 | D | 1 | - | - | \vdash | | | | | | | | | | 13.5-13.95 | Ь | n | 5 | 9 | 11 | | | 13.5 | | | | | | | 14 | n | | | | | | | | | | | | | | 15.00-15.45 | Ь | 4 | 4 | 7 | 11 | | | 0 | | | | | | | 15.5 | n | | | | - | 15.50M | | | D. CTAN | B. STANDADD PENETBATION TEST: | VOIT A GT. | TFST: | | | NO S | U: UNDISTURBED SAMPLE:: | BED | SAN | PLE | ::: | D: DISTURBED SAMPLE:: | IPLE:: | | F: SIA | TO THE LEVEL OF THE PARTY TH | | | | | | | 1 | 1 | TAG | MILLO | ECI. EVICTING CDOIND LEVEL. | | | | K:KEFUSAL;N>100:: | CINATOR: | | | | | | | BORE | BORE LOG CHART | | | | | | |----------------------------------|----------|---------|--------------------------------|----------------------|---------
--|---------------------|-------|-----| | | DATE | OFST | DATE OF STARTING: 21-05-2022 | GROUIND WATER I EVEL | EVEL | | | | | | BORE HOLE NO: 14 | DATE | OF CC | DATE OF COMPLETION: 21-05-2022 | 0.15M FROM EGL | GL GL | AUGER | AUGER & WASH BORING | SNG | | | | | ən | VISUAL DESCRIPTION | | GRAPHIC | GRAPHICAL REPRESENTATION OF N-Value | TION OF N-V | alue | | | (M) SAMPLE CM CM | 15
CM | IsV-Val | OF SOIL | . Log. | 20 | 40 | 09 | 80 | 100 | | 0.50-0.95 P 0 1 | - | 2 | Grayish brown silty CLAY | 0 | | | | | П | | 1 U | | | | 7 | | | | | | | 1.50-1.95 P 0 1 | 2 | 3 | | ?. | | | | | | | 2 U | | | | | | | | | | | 3.0-3.45 P 0 1 | 2 | 3 | | | | | | | | | Ŋ | 1 | 1 | | 45 | | | | | | | .95 | - | 7 | | | | | | | П | | D. | ŀ | | | 9 | | | | | 1 | | 15 | | ~ | |)
 | | | | | I | | Ω | | | | 7 2 | | | | | | | 7.5-7.95 P 2 1 | е | 4 | | C: / | | | | | Ŧ | | 0 8 | | | | | | | | | | | 9.0-9.45 P 1 1 | 7 | 8 | | D | | | | | | | 9.5 U | | | | , | | | | | I | | 10.5-10.95 P 1 2 | 7 | 4 | | 10.5 | | | | | | | + | | | | Ç | | | | | H | | 12.00-12.45 P 1 2 | - | 8 | | 71 | | | | | 1 | | 12.5 U | | | | | | | | | | | 13.5-13.95 P 2 1 | 8 | 4 | | 13.5 | | | | | T | | 14 U | | | | | | | | | | | 15.00-15.45 P 2 2 | က | 2 | | <u>6</u> | | | | | | | 15.5 U | | | | | D. C.T. | P. STANDARD PENETRATION TEST: | TRATION | FFST. | | | U; UNDISTURBED SAMPLE:: D: DISTU | PLE | | D: DISTURBED SAMPLE: | LE: | 1.01 | THE PROPERTY OF O | | | | 50 of 304 1 | Depth Type STARTING: 22-065-2022 GROUND WATER LEVEL DATE OF STARTING: 22-065-2022 GROUND WATER LEVEL DATE OF STARTING: 22-065-2022 GASAPHE CM CM SAPPLE SAPPLE CM CM SAPPLE CM CM SAPPLE CM CM SAPPLE CM CM SAPPLE SAPP | | | | | | | BORE | BORE LOG CHART | L | | | | | | |--|-------------|----------|------------|-----------|-----|--------|------------------------------------|----------------|----------|-----------|-----------|--------------|-------------|-----| | DEPTH TYPE SAPT | | | ١. | | DAT | E OF S | TARTING: 22-05-2022 | GROUND WATE | R LEVEL | | 01014 | 0 MAKEU DO | ONIC | | | 150-195 Part Type SPIT | BORE HOL | E NO: 15 | | | DAT | E OF | COMPLETION: 22-05-2022 | 0.23M FRO | N EGL | | AUGER | & WASH BUT | פוועס | | | March SAMPLE CM CM CM CM CM CM CM C | DEPTH | TYPE | 15 | SPT
15 | 15 | anje | VISUAL DESCRIPTION | LOG. | | GRAPHICAL | REPRESENT | ATION OF N-V | alue | | | 0.50-0.95 P 0 0 1 1 1 Grayish silty CLAY 1 1.00M 1 2 Grayish brown silty CLAY With Some 2 2 4 Grayish brown silty CLAY 3.0-3.45 P 1 2 2 4 Grayish silty CLAY 3.0-3.45 P 2 4 Grayish silty CLAY 4.5-4.95 P 3 4 5 9 6.0-6.45 P 3 4 5 9 6.0-6.45 P 4 6 6 112 Grayish Fine To Medium SAND. 8 9.0-9.45 P 6 8 9 17 9 9 9 9 9 9 17 1 1.00-12.45 P 7 7 10 17 1 1.20-12.45 P 6 8 12 20 1 1.20-12.45 P 7 9 14 23 1 1.5.00-15.45 | (M) | SAMPLE | manufact (| | | ۸-N | OF SOIL | | 0 | 20 | 40 | 09 | 80 | 100 | | 1.50-1.95 P 0 1 1 2 Grayish brown silty CLAY With Some 1.50-1.95 P 0 1 1 1 2 Grayish brown silty CLAY With Some 2.80M 3.0-3.45 P 1 2 2 4 Grayish silty CLAY 2.80M 3.5-3.45 P 3 4 7 7 Grayish Fine To Medium SAND. 6.80M | 0.50-0.95 | P | 0 | 0 | - | - | | | | | | | | | | 1.50-1.95 P 0 1 1 2 Grayish brown silty CLAY With Some 2 80M 3.0-3.45 P 1 2 2 4 Grayish silty CLAY 2 80M 4.5 4.5 4.5 P 1 2 2 4 Grayish silty CLAY 2 8.0M 4.5 4.5 P 3 3 4 7 7 6.60-6.45 P 3 4 5 9 6.80M 6.5 U 8 6 6 12 Grayish Fine To Medium SAND. 7.5 P 4.5 P 5 8 9 17 P 5 8 15 P 5 7 8 15 P 7 7 10 17 P 12.5 D 8 P 6 8 12 20 P 14 23 P 7 7 9 14 23 P 7 9 14 23 P 15.45M 15.5 D | 1 | n | | | | | 1.10M | | | | | | | | | 2 U Fine Sand. 2.80M 3.0-3.45 P 1 2 2 4 Grayish silty CLAY 3.5 U 2 2 4 Grayish silty CLAY 3.5 U 3 3 4 7 7 6.6-6.45 P 3 4 5 9 6.80M 6.80M 7.5-7.95 P 6 6 12 Grayish Fine To Medium SAND. 9.5 D 7 7 10 17 12.00-12.45 P 6 8 12 20 13.5-13.95 P 6 8 12 20 14 D 7 7 7 10 17 12.5 D 7 14 23 15.5-13.95 P 7 9 14 23 15.5-13.95 P 15.45M 15.5 D 15.45M 15.5 D 15.45M 15.5 D 15.45M 15.5 D 15.45M | 1.50-1.95 | Ь | 0 | - | - | 2 | Grayish brown silty CLAY With Some | 0.1 | • | | | | | | | 3.0-3.45 P 1 2 2 4 Grayish silty CLAY 3.5 U 2 4 Grayish silty CLAY 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 6.0-6.45 P 3 4 7 7 6.80M 6.80M 6.80M 7.5 7.95 P 4 6 6 12 7.5 7.95 P 4 6 6 12 7.5 7.95 P 5 8 9 17 9.9 9.9 45 P 5 7 8 15 10.5-10.95 P 6 8 12 20 11 12.00-12.45 P 7 7 10 17 12.5 D 7 7 10 17 12.5-13.95 P 6 8 12 20 13.5-13.95 P 6 8 12 20 14 D 7 7 7 10 17 15.50-15.45 P 7 9 14 23 | 2 | n | | | | | | | | | | | | | | 3.5 U | 3.0-3.45 | Ь | 1 | 2 | 2 | 4 | Grayish silty CLAY | 7 | | | | | | | | 4.5-4.95 P 3 3 4 7 7 5.0-6.45 P 3 4 5 9 6.0-6.45 P 4 6 6 12 Grayish Fine To Medium SAND. 7.5-7.95 P 4 6 6 12 Grayish Fine To Medium SAND. 8 9.0-9.45 P 5 8 9 17 9.5 D 7 7 10 17 12.00-12.45 P 7 7 10 17 12.00-12.45 P 7 7 10 17 12.00-13.45 P 7 7 10 17 13.5-13.95 P 6 8 12 20 13.5-13.95 P 6 8 12 20 13.5-13.95 P 7 9 14 23 13.5-13.95 P 15.45M 15.00-15.45 P 7 9 14 23 15.50-15.45 P 7 9 14 23 15.50-15.45 P 7 9 14 23 15.50-15.45 P 7 9 14 23 | 3.5 | U | | | | | | | | | | 4 | | | | 5 U 6.80M 6.80M 6.50M 6. | 4.5-4.95 | Ь | 3 | 3 | 4 | 7 | | 6.4 | | | | | | | | 6.5 | 5 | n | | | | | | | - | | | | | | | 6.5 U 6 6 12 Grayish Fine To Medium SAND. 8 D 6 80M 75.7.95 8 D 7.5.7.95 9.0.9.45 P 6 6 12 Grayish Fine To Medium SAND. 10.5-10.95 P 5 7 8 15 11.05-10.95 P 6 8 12 20 12.00-12.45 P 7 7 10 17 12.5 D 7 7 10 17 13.5-13.95 P 6 8 12 20 14 D 7 9 14 23 15.00-15.45 P 7 9 14 23 15.00-15.45 D D D DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 6.0-6.45 | Ь | က | 4 | 2 | 6 | | | • | | | | | | | Name | 6.5 | n | | | | | | | | | - | | | | | 8 D 8 9 17 90-9-45 P 5 8 9 17 10.5-10.95 P 5 7 8 15 11 D 7 7 10 17 12.00-12.45 P 7 7 10 17 12.00-12.45 P 7 7 10 17 13.5-13.95 P 6 8 12 20 14 D 7 7 9 14 23 15.00-15.45 P 7 9 14 23 15.50-15.45 D 9 14 23 15.50-15.45 D D: DISTURBED SAMPLE:: | 7.5-7.95 | Ь | 4 | 9 | 9 | | | 7.5 | | | | | | | | 9.0-9.45 P 5 8 9 17 9.5 D | 8 | D | | | | | | | | | | | | | | 9.5 D 7 8 15 10.5-10.95 P 5 7 8 15 11 D 7
7 10 17 12.50-12.45 P 7 7 10 17 12.5 D 7 7 10 17 13.5-13.95 P 6 8 12 20 14 D 7 7 9 14 23 15.00-15.45 P 7 9 14 23 15.50-15.45 D D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 9.0-9.45 | Ь | 5 | 8 | 6 | 17 | | 0 | | • | | | | | | 10.5-10.95 P 5 7 8 15 11 D 10.5 10.5 10.5 12.00-12.45 P 7 7 10 17 12.5 D 10 17 12 12 13.5-13.95 P 6 8 12 20 13.5 13.5 13.5 15.00-15.45 P 7 9 14 23 15.45M 15.45M 15.45M 15.45M | 9.5 | D | | | | | | | | | | | | | | 11 D 12.00-12.45 P 7 7 10 17 12.00-12.45 P 7 7 10 17 12.00-12.45 D 6 8 12 20 15.00-15.45 P 7 9 14 23 15.00-15.45 D 15.45M 15.5 D 15.45M DISTURBED SAMPLE:: | 10.5-10.95 | Ь | 5 | 7 | œ | 15 | | 10.5 | | - | | | | | | 12.00-12.45 P 7 7 10 17 12.5 D | 11 | D | | | | | | | | | | | | | | 12.5 D 8 12 20 13.5-13.95 P 6 8 12 20 14 D 14 23 15.45M 15.45M 15.5 D 15.45M 15.45M 15.45M | 12.00-12.45 | P | 7 | 7 | 10 | 17 | | 5 | | • | | | | | | 13.5-13.95 P 6 8 12 20 14 D 14 23 15.00-15.45 P 7 9 14 23 15.5 D 15.45M 15.5 D 15.45M 15.5 D 15.45M | 12.5 | D | | | | | | | | | | | | | | 15.00-15.45 P 7 9 14 23 15.45M 15.5 D 15.45M DISTURBED SAMPLE:: | 13.5-13.95 | P | 9 | 8 | 12 | 20 | | 13.5 | | • | | | | | | 15.00-15.45 P 7 9 14 23 15.45M 15.5 D 15.45M 15.45M 15.45M 15.5 D: DISTURBED SAMPLE:: | 14 | D | | | | | | | | _ | | | | | | 15.5 D 15.45M 15.45M D: DISTURBED SAMPLE:: | 15.00-15.45 | P | 7 | 6 | 14 | 23 | | | | | | | | | | D: DISTURBED SAMPLE:: D: DISTURBED SAMPLE:: | 15.5 | D | | | | | | | | THE CHAIN | Trad day | MOITAGE | T. D. C. L. | | | | 1 | DISTURE | RED S | AMP | LE | | -41 | 'LE:: | | F: SIAN | JAKU PEN | FIRALION | LEST | | | | ١ | - | | | - | | | | | | | | | | | BELEKA ASSAM | BORE | BORE LOG CHART | IRT | | | | | | |--|----------------|--------------------|---------|----------|--|----------------------|--|---------| | DATE OF STARTING: 20-05-2022 | | GROUND WATER LEVEL | TER LEV | EL | 22014 | ONIACA HOAM & ABOILA | CNIG | | | BORE HOLE NO: 16 DATE OF COMPLETION: 20-05-2022 | 05-2022 | 0.10M FROM EGL | OM EGL | | AUGE | K & WASH BU | KING | | | SPT | NOI | | | GRAPHICA | GRAPHICAL REPRESENTATION OF N-Value | TATION OF N. | Value | | | (M) SAMPLE CM CM CM Z | | . TOG | 0 | 20 | 40 | 09 | 80 | 100 | | 95 P 1 1 | | | 0 | | | - | | | | 1 U ' | | | | | | | | | | 1.50-1.95 P 2 2 3 5 | **** | | O. | | | | | | | 2 U | 3.00M | | | | | | | i
Li | | 3.0-3.45 P 3 4 7 7 Grayish silty CLAY With Some Fine | With Some Fine | | 2 | | | | | | | 3.5 U SAND. | | | 4 | | | | | | | 4.5-4.95 P 3 5 8 13 | 4.20M | 1 | U | | | | | | | 5 U Grayish Brown silty CL | CLAY | | (| | | | | | | 6.0-6.45 P 4 4 8 12 | **** | | 0 | | | | | T | | 6.5 U | **** | | | | | | | | | 7.5-7.95 P 3 4 6 10 | | | C.) | | | | | | | n 8 | | | | | | | | T | | 9.0-9.45 P 3 5 6 11 | | | o o | • | | | | | | D 2.9 | | | _ | | | | | | | 10.5-10.95 P 5 7 7 14 | **** | 10 | 10.5 | • | | | | | | 11 U | | | | | | | | T | | 12.00-12.45 P 5 6 8 14 | | | 12 | • | | | | | | 12.5 U | | | | | | | | | | 13.5-13.95 P 3 4 4 8 | | 22 | 3.5 | | | | | | | 14 U | 14.20M | | _ | | | | | | | 15.00-15.45 P 4 6 8 14 Grayish silty CLAY W | ith Son | | 13 | • | | | | | | 15.5. U SAND. | M05.51 | | | | The state of s | ACTOR A CHARLE | The Country of Co | | | QUINDISTURBED SAMPLE:: D: DISTUR | URBED SAMPLE:: | Æ:: | | P: SIA | P. STANDARD PENETRALION | EIKALION | LESI:: | | | THE RESERVE OF THE PARTY | - | | | | D.DFFTSAL.N>100: | :.V2100: | | | #### Location:-BH1 # CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA) Depth of foundn , Df = 3 m Width(B)M= Length L = Soil parameter Cohesion, C= 0.31 kg/scm= 3.1 t/sqm Saturated density, y (Metric ton/m3) = .80 Angle of internal friction, \emptyset (deg)= 8, shear condition Local Angle of shearing resistance for local failure = $\emptyset_m = \tan^{-1} 2/3 \tan \emptyset$ | | | Bearing | capacity | factor | |----|---|---------|----------|--------| | Ø | 8 |
Nc | Nq | Ny | | Øm | 5 | 6.49 | 1.57 | 0.45 | ## Shape, Depth and inlination factor | Shape | factor | Depth | factor | Inclina | tion factor | acatamine acatami | able corection factor | |-------|--------|-------|--------|---------|-------------|-------------------|-----------------------| | Sc= | 1.3 | dc= | 1.33 | ic= | 1 | | | | Sq= | 1.2 | dq= | 1 | iq= | 1 | w' = | 0.5 | | Sy = | 0.8 | dy = | 1 | iγ = | 1 | | | Ultimate bearing capacity (qd) (Local shear Condition) $q_d = \{2/3 \text{ c Nc sc dc ic } + \{y \text{ D } (Nq - 1)\text{sq dq iq } \} + \{0.5 \text{ y B Ny sy dy iy W'}\}$ q d = 23.26 .+ 3.6936 .+ 0.324 .= 27.27 Metric tonne/sqm Net Safe bearing capacity, Qns .= Qd /F = 27.27 Metric tonne/sqm F= factor of safety =2.5 | q ns = | 10.91 Metric tonne/sqm | |--------|------------------------| | q ns = | 106.9 KN/sqm | #### Location:-BH2 ## CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA) Depth of foundn , Df = 3 m Width(B)M= Length L = 2 Soil parameter Cohesion, C= 0.35 kg/scm= 35 kg/scm= 3.5 t/sqm Saturated density, y (Metric ton/m3) = .80 Angle of internal friction,O(deg)= 8, shear condition Local Angle of shearing resistance for local failure = $\emptyset_m = \tan^{-1} 2/3 \tan \emptyset$ | | | Bearing | capacity | factor | |----|---|---------|----------|--------| | Ø | 8 | Nc | Nq | Νγ | | Øm | 5 | 6.49 | 1.57 | 0.45 | ## Shape, Depth and inlination factor | Shape | factor | Depth | factor | Inclinat | ion factor | | table corection factor | |-------|--------|-------|--------|----------|------------|------|------------------------| | Sc= | 1.3 | dc= | 1.33 | ic= | 1 | | | | Sq= | 1.2 | dq= | 1 | iq= | 1 | w' = | 0.5 | | Sy = | 0.8 | dy = | 1 | iy = | 1 | | | Ultimate bearing capacity (qd) (Local shear Condition) $q_d = \{2/3 \text{ c Nc sc dc ic } + \{y \text{ D } (Nq - 1)\text{sq dq iq } \} + \{0.5 \text{ y B Ny sy dy iy W'} \}$ Net Safe bearing capacity, Qns .= Qd /F = 30.27 Metric tonne/sqm F= factor of safety = 2.5 | q ns = | 12.11 Metric tonne/sqm | | |--------|------------------------|--| | q ns = | 118.7 KN/sqm | | #### Location:-BH 3 ## CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA) Depth of foundn , Df = 3 m Width(B)M= Length L = Soil parameter Cohesion, C= 0.28 kg/scm= 2.8 t/sqm Saturated density, y (Metric ton/m3) = 1.80 Angle of internal friction,O(deg)= 7, shear condition Angle of shearing resistance for local failure = $\emptyset_m = \tan^{-1} 2/3 \tan \emptyset$ | | | Bearing | capacity | factor | |----|---|---------|----------|--------| | Ø | 7 | Nc | Nq | Ny | | Øm | 4 | 6.22 | 1.45 | 0.36 | ## Shape, Depth and inlination factor | Shape | factor | Depth | factor | Inclinat | ion factor | EAST 10 A A A A A | able corection factor | |-------|--------|-------|--------|----------|------------|-------------------|-----------------------| | Sc= | 1.3 | dc= | 1.32 | ic= | 1 | | | | Sq= | 1.2 | dq= | 1 | iq= | 1 | w' = | 0.5 | | Sy = | 0.8 | dy = | 1 | iγ= | 1 | | | Ultimate bearing capacity (qd) (Local shear Condition) $q_d = \{2/3 \text{ c Nc sc dc ic } + \{y \text{ D } (Nq - 1) \text{sq dq iq } \} + \{0.5 \text{ y B Ny sy dy iy W'} \}$ Qd/F = Net Safe bearing capacity , Qns 23.22 Metric tonne/sqm F= factor of safety =2.5 | q ns = | 9.29 Metric tonne/sqm | | |--------|-----------------------|--| | q ns = | 91.02 KN/sqm | | C 4.2 Location: BH4 ## CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA) Depth of foundn, Df = 2 m Width(B)M= Length L = Soil parameter Cohesion, C= 0.31 kg/scm= 3.1 t/sqm Saturated density, y (Metric ton/m3) = 1.80 Angle of internal friction, $\emptyset(deg)$ = 7, shear condition Angle of shearing resistance for local failure = $\emptyset_m = \tan^{-1} 2/3 \tan \emptyset$ | | | Bearing | capacity | factor | |----|---|---------|----------|--------| | Ø | 7 | Nc | Nq | Ny | | Øm | 4 | 6.22 | 1.45 | 0.36 | ## Shape, Depth and inlination factor | Shape | factor | Depth | factor | Inclinat | ion factor | | able corection factor | |-------|--------|-------|--------|----------|------------|------|-----------------------| | Sc= | 1.3 | dc= | 1.21 | ic= | 1 | | | | Sq= | 1.2 | dq= | 1 | iq= | 1 | w' = | 0.5 | | Sy = | 0.8 | dγ = | 1 | iγ = | 1 | | | Ultimate bearing capacity (qd) (Local shear Condition) q_d = {2/3 c Nc sc dc ic } + {y D (Nq - 1)sq dq iq } + {0.5 y B Ny sy dy iy W'} Qd /F = 22.60 Metric tonne/sqm Net Safe bearing capacity, Qns F= factor of safety = 2.5 | q ns = | 9.04 Metric tonne/sqm | |--------|-----------------------| | q ns = | 88.58 KN/sqm | #### Location:BH5 # CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA) Depth of foundn, Df = 3 m Width(B)M= 2 Length L = 2 Soil parameter Cohesion, C= 0.33 kg/scm= 3.3 t/sqm Saturated density, y (Metric ton/m3) = 1.80 Angle of internal friction, Ø(deg)= 8, shear condition Local Angle of shearing resistance for local failure = $\emptyset_m = \tan^{-1} 2/3 \tan \emptyset$ | | | Bearing | capacity | factor | |----|---|---------|----------|--------| | Ø | 8 | Nc | Nq | Nγ | | Øm | 5 | 6.49 | 1.57 | 0.45 | ## Shape, Depth and inlination factor | Shape | factor | Depth | factor | Inclinati | ion factor | | able corection factor | |-------|--------|-------|--------|-----------|------------|------|-----------------------| | Sc= | 1.3 | dc= | 1.33 | ic= | 1 | | | | Sq= | 1.2 | dq= | 1 | iq= | 1 | w' = | 0.5 | | Sv = | 0.8 | dv = | 1 | iy = | 1 | | | Ultimate bearing capacity (qd) (Local shear Condition) $q_d = \{2/3 \text{ c Nc sc dc ic } + \{y \text{ D } (Nq - 1)\text{sq dq iq } \} + \{0.5 \text{ y B Ny sy dy iy W'}\}$ Q d = 24.76 .+ 3.6936 .+ 0.324 = 28.77 Metric tonne/sqm Net Safe bearing capacity , **q**ns .= Qd /F = 28.77 Metric tonne/sqm F= factor of safety =2.5 | q ns = | 11.51 Metric tonne/sqm | |--------|------------------------| | q ns = | 112.8 KN/sqm | ## Location:BH6 # CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA) Depth of foundn , Df = 3.0 m Width(B)M= 2 Length L = Soil parameter Cohesion, C= 0.33 kg/scm= 3.3 t/sqm Saturated density, y (Metric ton/m3) = .80 Angle of internal friction, \emptyset (deg)= 7, shear condition Local Angle of shearing resistance for local failure = $\emptyset_m = \tan^{-1} 2/3 \tan \emptyset$ | | | Bearing | capacity | factor | |----|---|---------|----------|--------| | Ø | 7 | Nc | Nq | Ny | | Øm | 4 | 6.22 | 1.45 | 0.36 | ## Shape, Depth and inlination factor | Shape | factor | Depth | factor | Inclinat | ion factor | The state of s | able corection factor | |-------|--------|-------|--------|----------|------------|--|-----------------------| | Sc= | 1.3 | dc= | 1.32 | ic= | 1 | | | | Sq= | 1.2 | dq= | 1 | iq= | 1 | w' = | 0.5 | | Sy = | 0.8 | dγ = | 1 | iγ = | 1 | | | Ultimate bearing capacity (qd) (Local shear Condition) $q_d = \{2/3 \text{ c Nc sc dc ic } + \{y \text{ D } (Nq - 1)\text{sq dq iq } \} + \{0.5 \text{ y B Ny sy dy iy W'}\}$ q d = {0.67x 3.3 x 6.22 x 1.3 x 1.32 x 1 } .+{ 1.8 x 3 x (1.45.-1) x 1.2 x 1 x 1 } .+{ 0.5 x 1.8 x 2 x 0.36 x 0.8 x 1 x 1 x 1 } q d = 23.62 .+ 2.916 .+ 0.2592 .= 26.8 Metric tonne/sqm Net Safe bearing capacity, **q**ns .= **q**d /F = 26.80 Metric tonne/sqm F= factor of safety = 2.5 | q ns = | 10.72 Metric tonne/sqm | |--------|------------------------| | q ns = | 105.1 KN/sqm |