
Name of Project : GEO-TECHNICAL INVESTIGATION WORK FOR PROPOSED CONSTRUCTION OF BOUNDARY WALL, NEGG PIPE LINE AT

Name of Project : GEO-TECHNICAL INVESTIGATION WORK FOR PROPOSED CONSTRUCTION OF BOUNDARY WALL, NEGG PIPE LINE AT BARPALAHA, BEZERA ASSAM

Tame of Project : GEO-TECHNICAL INVESTIGATION WORK FOR PROPOSED CONSTRUCTION OF BOUNDARY WALL, NEGG PIPE LINE AT BARPALAHA, BEZERA ASSAM

CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA)

```
Depth of foundn, \(D f=\quad 3 \mathrm{~m}\)
```

Width $(B) M=2$	Length $L=$

Soil parameter

Cohesion, $C=0.31 \mathrm{~kg} / \mathrm{scm}=\quad 3.1 \mathrm{t} / \mathrm{sqm} \quad$ Saturated density, $\mathrm{y}($ Metric ton $/ \mathrm{m} 3)=1.80$
Angle of internal
friction, $\emptyset_{(\operatorname{deg})}=\quad$ 8, shear condition Local
Angle of shearing resistance for local failure $=\varnothing_{m}=\tan ^{-1} 2 / 3 \tan \varnothing$

		Bearing capacity factor		
\varnothing	8	Nc	Nq	Ny
$\varnothing \mathrm{m}$	5	6.49	1.57	0.45

Shape, Depth and inlination factor

Shape factor		Depth factor		Inclination factor		Water table corection factor	
Sc=	1.3	dc=	1.33	ic=	1	$w^{\prime}=$	0.5
Sq=	1.2	$\mathrm{dq}=$	1	iq=	1		
Sy $=$	0.8	$\mathrm{d} \gamma=$		iy =	1		

Ultimate bearing capacity (qd) (Local shear Condition)

$q_{d}=$	\{0.67x	3.1	x	6.49	\times	1.3	\times	1.33	\times	1				
	+ $\{1.8$	\times	3	$\times 1$.-1) x	1.2	\times	1	\times	1	\}		
	+ $\{0.5 \mathrm{x}$	1.8	x	2	x	0.45	x	0.8	x	1	\times	1	x	

$q_{d}=23.26+3.6936 \quad+\quad 0.324=\quad 27.27$ Metric tonne/sqm

Net Safe bearing capacity, $q_{\mathrm{ns}}=q_{\mathrm{d}} / \mathrm{F}=27.27$ Metric tonne/sqm
$\mathrm{F}=$ factor of safety $=2.5$

$\mathrm{q}_{\text {ns }}=$	10.91 Metric tonne/sqm
$\mathrm{q}_{\text {ns }}=$	$106.9 \mathrm{KN} / \mathrm{sqm}$

CALCULATION OF NET SAFE BEARING CAPACITY
 (SHEAR CRITERIA)

```
Depth of foundn, \(\mathrm{Df}=\quad 3 \mathrm{~m}\)
```

Width(B)M $=2$	Length $L=$

Soil parameter

Cohesion, $C=0.35 \mathrm{~kg} / \mathrm{scm}=\quad 3.5 \mathrm{t} / \mathrm{sqm} \quad$ Saturated density, $\mathrm{y}($ Metric ton $/ \mathrm{m} 3)=1.80$
Angle of internal
friction, $\varnothing_{(\mathrm{deg})}=\quad$ 8, shear condition Local
Angle of shearing resistance for local failure $=\varnothing_{m}=\tan ^{-1} 2 / 3 \tan \varnothing$

		Bearing capacity factor		
\varnothing	8	Nc	Nq	Ny
$\varnothing \mathrm{m}$	5	6.49	1.57	0.45

Shape, Depth and inlination factor

Shape factor		Depth factor		Inclination factor		Water table corection factor	
Sc=	1.3	dc=	1.33	ic=	1	$w^{\prime}=$	0.5
Sq=	1.2	$\mathrm{dq}=$	1	$\mathrm{iq}=$	1		
Sy $=$	0.8	$\mathrm{d} y=$	1	iy =	1		

Ultimate bearing capacity (qd) (Local shear Condition)

Location:-BH 3

CALCULATION OF NET SAFE BEARING CAPACITY
(SHEAR CRITERIA)

Angle of shearing resistance for local failure $=\emptyset_{m}=\tan ^{-1} 2 / 3 \tan \varnothing$

		Bearing capacity factor		
\varnothing	7	Nc	Nq	Ny
$\varnothing \mathrm{m}$	4	6.22	1.45	0.36

Shape, Depth and inlination factor

Shape factor		Depth factor		Inclination factor		Water table corection factor	
Sc=	1.3	$\mathrm{dc}=$	1.32	ic=	1	$w^{\prime}=$	0.5
Sq=	1.2	$\mathrm{dq}=$	1	iq=	1		
Sy =	0.8	$d y=$	1	iy =	1		

Ultimate bearing capacity (qd) (Local shear Condition)
$q_{d}=\{2 / 3 c$ Nc sc dc ic $\}+\{y D(N q-1) s q d q$ iq $\}+\left\{0.5 y B N y\right.$ sy dy iy $\left.W^{\prime}\right\}$

CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA)

```
Depth of foundn, \(\mathrm{Df}=\quad 2 \mathrm{~m}\)
```

Width $(B) M=2$	Length $L=$

Soil parameter

Cohesion, $C=0.31 \mathrm{~kg} / \mathrm{scm}=\quad 3.1 \mathrm{t} / \mathrm{sqm} \quad$ Saturated density , $\mathrm{y}($ Metric ton $/ \mathrm{m} 3)=1.80$
Angle of internal
friction, $\boldsymbol{\emptyset}_{(\operatorname{deg})}=$ 7, shear condition Local
Angle of shearing resistance for local failure $=\emptyset_{m}=\tan ^{-1} 2 / 3 \tan \varnothing$

Bearing capacity factor				
\varnothing	7	Nc	Nq	Ny
$\varnothing \mathrm{m}$	4	6.22	1.45	0.36

Shape, Depth and inlination factor

Shape factor		Depth factor		Inclination factor		Water table corection factor	
Sc=	1.3	$\mathrm{dc}=$	1.21	ic=	1	$w^{\prime}=$	0.5
Sq=	1.2	dq=	1	$\mathrm{q}=$	1		
Sy =	0.8	dy $=$	1	iy =	1		

Ultimate bearing capacity (qd) (Local shear Condition)

$q_{d}=$	\{0.67x	3.1	x	6.22	x	1.3	\times	1.21	x	1			
	+¢ 1.8	x	2	\times		. 1) X	1.2	x	1	\times	1	\}	
	+ $\{0.5 \mathrm{x}$	1.8	x	2	\times	0.36	x	0.8	\times	1	x		x

$q_{d}=20.39+1.944 \quad+\quad 0.2592=\quad 22.6$ Metric tonne/sqm

Net Safe bearing capacity, $q_{\mathrm{ns}}=\mathrm{q}_{\mathrm{d}} / \mathrm{F}=22.60$ Metric tonne/sqm
$F=$ factor of safety $=2.5$

$q_{\text {ns }}=$	9.04 Metric tonne/sqm
$q_{\text {ns }}=$	$88.58 \mathrm{KN} / \mathrm{sqm}$

| Soil parameter
 Cohesion, $C=$ | $0.33 \mathrm{~kg} / \mathrm{scm}=$ | $3.3 \mathrm{t} / \mathrm{sqm}$ |
| :--- | :--- | :--- |\quad Saturated density, y (Metric ton $/ \mathrm{m} 3$) $=1.80$

Angle of shearing resistance for local failure $=\emptyset_{m}=\tan ^{-1} 2 / 3 \tan \varnothing$

		Bearing capacity factor		
\varnothing	8	Nc	Nq	Ny
$\varnothing \mathrm{m}$	5	6.49	1.57	0.45

Shape, Depth and inlination factor

Shape factor		Depth factor		Inclination factor		Water table corection factor	
Sc=	1.3	dc=	1.33	ic=	1	$w^{\prime}=$	0.5
Sq=	1.2	dq=	1	iq=	1		
$S^{\text {Y }}=$	0.8	$\mathrm{d} \gamma=$	1	iy =	1		

Ultimate bearing capacity (qd) (Local shear Condition)

$q d=$	\{0.67x	3.3	x	6.49		\times	1.3	x	1.33	x	1	\}			
	+ $\{1.8$	x	3	x			.-1) x	1.2	\times	1	x	1	\}		
	+ $\{0.5 \mathrm{x}$	1.8	x	2		x	0.45	x	0.8	x	1	x	1	\times	
$\mathrm{q}_{\mathrm{d}}=$	24.76		3.6936		.+		0.324		28.77	Metric	onne	/sqm			

Net Safe bearing capacity, $\mathrm{q}_{\mathrm{ns}}=\quad \mathrm{q}_{\mathrm{d}} / \mathrm{F}=28.77$ Metric tonne/sqm
$F=$ factor of safety $=2.5$

$q_{n s}=$	11.51 Metric tonne $/$ sqm
$q_{n s}=$	$112.8 \mathrm{KN} / \mathrm{sqm}$

CALCULATION OF NET SAFE BEARING CAPACITY (SHEAR CRITERIA)

Depth of foundn, $\mathrm{Df}=\quad 3.0 \mathrm{~m}$

Width $(B) M=2$	Length $L=$

Soil parameter
Cohesion, $C=0.33 \mathrm{~kg} / \mathrm{scm}=\quad 3.3 \mathrm{t} / \mathrm{sqm} \quad$ Saturated density, $\mathrm{y}($ Metric ton $/ \mathrm{m} 3)=1.80$
Angle of internal
friction, $\emptyset_{(\operatorname{deg})}=\quad$ 7, shear condition Local
Angle of shearing resistance for local failure $=\emptyset_{m}=\tan ^{-1} 2 / 3 \tan \varnothing$

		Bearing capacity factor		
\varnothing	7	Nc	Nq	Ny
$\varnothing \mathrm{m}$	4	6.22	1.45	0.36

Shape, Depth and inlination factor

Shape factor		Depth factor		Inclination factor		Water table corection factor	
$\mathrm{Sc}=$	1.3	dc=	1.32	ic=	1	$w^{\prime}=$	0.5
Sq=	1.2	dq=	1	$\mathrm{iq}=$	1		
Sy =	0.8	$\mathrm{d} \gamma=$		i $\mathrm{Y}=$	1		

Ultimate bearing capacity (qd) (Local shear Condition)

$q_{d}=$	\{0.67x	3.3	x	6.22	\times	1.3	x	1.32	x	1			
	+ $\{1.8$	\times	3	x		.-1) x	1.2	\times	1	\times	1	\}	
	+ $\{0.5 \mathrm{x}$	1.8	x	2	x	0.36	x	0.8	\times	1	\times	1	x

$q_{d}=23.62+2.916 \quad+\quad 0.2592=\quad 26.8$ Metric tonne/sqm

Net Safe bearing capacity , $\mathrm{q}_{\mathrm{ns}} \quad=\quad \mathrm{q}_{\mathrm{d}} / \mathrm{F}=26.80$ Metric tonne/sqm
$\mathrm{F}=$ factor of safety $=2.5$

$\mathrm{q}_{\text {ns }}=$	10.72 Metric tonne $/$ sqm
$\mathrm{q}_{\text {ns }}=$	$105.1 \mathrm{KN} /$ sqm

